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1 Literary Study

1.1 Introduction

1.1.1 Polygons

Cormen et al. [21] describe a polygon as a piecewise-linear closed curves in the plane. That is, it is
a curve that ends on itself which consists of a sequence of straight line segments, which are called
edges or sides. The set of points in the plane enclosed by the polygon is known as its interior,
while the set of points on the polygon is its boundary. The remaining points, which surround the
polygon, collectively make up its exterior. Two points z and y on the boundary or in the interior
of the polygon are mutually visible if the line segment connecting x and y does not intersect the
exterior.

A point joining two consecutive edges is called a vertez. If the interior angle between consecutive
edges is strictly greater than 7 radians, the vertex is considered to be a reflex vertex, or concave
vertex. Otherwise, it is known as a convex vertex. A chord of a polygon is a line segment through
its interior joining two (non-adjacent) vertices [67].

1.1.2 Polygon classes

A polygon is simple if it does not intersect itself. Polygons are often assumed to be simple, unless
explicitly stated otherwise. Self-intersecting polygons, on the other hand, are not common in
computational geometry and are excluded from the scope of this paper. A convex polygon is a
polygon whose vertices are all convex. Equivalently, any two points p, ¢ on the boundary or in
the interior of the polygon, must be mutually visible. While a simple polygon is topologically
equivalent to a disk, a polygon with holes may be obtained by removing a non-overlapping set
of strictly interior, simple subpolygons from the polygon [73]. Some authors allow for degenerate
holes such as points or lines. The complexity of polygons and algorithms involving polygons is
often measured using the number of vertices of the polygon, typically denoted n. Occasionally
the number of reflex vertices or the number of holes in the polygon are taken into account as well,
usually denoted N and H, respectively.

1.1.3 Applications

Polygons serve a wide variety of applications, both practical and theoretical. They are used to
represent a wide variety of shapes and figures in computer graphics, computer vision, pattern
recognition, robotics, and other computational fields. Furthermore, polygons are key components
in geographic information systems (GIS) [L4]. These tools represent areas in the plane and their
boundaries as polygons, which serve for their visualization and to perform computations and
queries on them. Polygons may be used to represent planar subdivisions, for instance in the
context of thematic cartography [10].

1.1.4 More polygon classes

Some applications call for more restricted polygons. Orthogonal polygons, also referred to as
rectilinear polygons, are polygons whose edges are parallel to the (orthogonal) coordinate axes.
Therefore, in the Cartesian coordinate system the edges are either horizontal or vertical. Problems
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in computational geometry involving polygons frequently allow for more efficient algorithms when
restricted to orthogonal polygons [[73, [75]. Star-shaped polygons are polygons that contain a point
from which the entire polygon boundary is visible. The kernel of a polygon is the set of all of
the points from which the entire polygon boundary is visible. Note that any convex polygon is a
star-shaped polygon where the kernel consists of the entire polygon itself. Star-shaped polygons
play a key role in the art gallery problem originally proposed by Chvatal [1g], in which one is to
find the minimum number of points in a polygon from which each point of the polygon can be
seen. Another similar applications are that of graphics, scene analysis, and robotics [[75].

1.1.5 Polygon decomposition

Sometimes it may be desirable to consider the components of the polygon rather than the poly-
gon in its entirety. For instance, convex polygons offer nice properties that allow more efficient
algorithms for certain computational problems than for polygons in general. This is but one of
the motivations for the decomposition of polygons. Many computational geometry algorithms
decompose their input polygon into elementary pieces.

Within polygon decomposition various dimensions and parameters can be identified [73]. First
of all, there are the elementary components, or primitive components, that the polygon is to be
decomposed into. This is typically a type of geometric object such as rectangles or triangles, or
a restricted type of polygon such as convex polygons. Then the original input polygon itself may
be restricted to a particular domain. For instance, it could be given that the input polygon is
orthogonal. Furthermore, whether the polygon is simple or contains holes is a relevant distinction,
as it can make the difference between problems that can be solved efficiently and intractable
problems. Moreover, some problem statements may explicitly allow or disallow Steiner points,
whereas others do so implicitly. For a decomposition to be ‘minimal’, two measures are commonly
used. Either a decomposition is minimal in the number of components in the decomposition, or
it is minimal in the total length of its chords, also known as ‘ink’ used.

However, the most important dimension is that of the type of the decomposition. The class of
polygon decomposition problems contains the subclasses polygon covering and polygon partition-
ing. Generally speaking, in polygon covering a polygon is to be decomposed into a set of given
elementary components such that its union is equal to the input polygon. That is, in this case the
decomposition permits overlap between the elementary components of the set. Polygon partition-
ing on the other hand, requires a polygon to be decomposed into a non-overlapping set of given
elementary components such that its union is equal to the input polygon. Any valid solution to
the polygon partitioning problem is therefore a valid solution to the polygon covering problem,
and the value of any minimal solution to the former problem can be used as an upper bound
for the latter problem. illustrates the decomposition of a rectilinear polygon into the
minimum number of components. Consider a rectilinear polygon that is the result of the union
of k x k congruent orthogonal bars, as shown in . The minimum covering contains
2k rectangles whereas the minimum partitioning contains k(k + 1) rectangles. Note however, that
this covering is not a minimum with respect to ink usage. In fact, Eiéure 1ib | requires twice the

amount of ink that does.

Polygon Covering Almost all variations of the covering problem are intractable [73]. Bar-
Yehuda and Ben-Chanoch [f] presented a polynomial time, output sensitive solution to one of
the few tractable problems of the class of polygon covering problems, minimum square covering,
minimizing the number of squares.

Polygon covering lends itself to image processing, where it is used to create a compact description of
pictures [B, 78]. Quadtrees were often used to store black and white picture information. However,

4



Utrecht University Master Thesis

(L[] [ |I_II_II_I|
L1 [ [T [T T]

L] [ ||IIIIII|
HREEE HEEEE

(a) Rectilinear polygon (b) Minimum covering (¢) Minimum partitioning

Figure 1: Polygon decomposition of rectilinear polygon in minimum number of components

they took a considerable amount of storage and were very sensitive to the placement of the origin.
Polygon covering allowed for storing black squares compactly.

Moreover, Aupperle et al. [f] noted that a solution to the polygon covering problem could be used
to create the medial axis of the polygon. Using the digital medial axis transform (MAT) would
also allow for picture compression [86].

Another application of polygon covering is in pattern recognition, where the decomposition could
be used as feature extraction. It could be used, for example, to recognize Chinese handwriting [3,
29]. The benefit of this approach is that it is translation and rotation invariant. It should be
noted however, that modern research makes widespread use of neural networks [84] for this type
of feature extraction. It remains unclear whether a hybrid would yield better results.

Polygon Partitioning Agarwal et al. [2] propose an approach using polygon partitioning to
decompose a polygon into convex subpolygons, allowing for efficient construction of Minkowski
sums. This is but one of many examples in which decomposing polygons into smaller part that
allow for employing more efficient algorithms. Combining the results of the smaller parts may
yield (an approximation of) a solution for the original polygon [60].

Polygon partitioning is extensively used in VLSI design, in which geometric patterns are to be
flashed from a photomask onto a photosensitive material [48]. The photomask typically consists
of a piece of glass that can be considered as an orthogonal polygon. A partitioning into rectangles
allows the pattern generator to expose such rectangles. A minimum number of rectangles is
desirable, as the mask generation time depends on the number of rectangles.

Additive arc manufacturing is another application of polygon partitioning. As per Ding [26], the
3D geometry of a component is transformed into 2D slices. Then the 2D slices are partitioned into
convex or monotone polygons, which makes the implementation of path generation considerably
easier.

Enclosing Problem A variant on the covering problem is the enclosing problem, in which one
is to find the smallest geometrical object of a given type that encloses all the points in a given a
set S of n points. A variety of geometrical objects have been considered, including the minimum
area triangle [72], smallest ellipsoid [85], the minimum bounding box [83], and the minimum area
square [9].

In the related p-center problems, a point set S of n points is to be covered using p geometric
shapes, such that the maximum area is minimized. One application of such problems is deciding
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on the placement of p distribution centers such that the union of their service areas is to cover
all points in S [44]. Rectilinear p-center problems consider ¢ or {o, distance measures, resulting
in squares (albeit in different orientations). Note that any problem instance that is to be covered
using axis-aligned rectangles of a given aspect ratio may be transformed into a problem instance
that is to be covered using axis-aligned squares by scaling the point set along one coordinate axis
of the input with the aspect ratio.

1.1.6 Packing

Various definitions of the packing problem exist. Typically one is given a container, in this case
a two-dimensional shape, and a set of objects that are to be packed into the container. The goal
of the problem is usually to either pack as many of the set of objects into one container without
overlap, or to determine the minimum number of copies of the container to be able to pack the
entire set of objects into containers. For this paper, the scope is limited to the former, which is
also known as the nesting problem.

The packing problem applied to polygons is similar to the problems in the class of polygon decom-
position, in that the resulting solution can be considered as a crude approximation or simplified
description of the input polygon. Polygon covering and polygon partitioning require the union of
the solution, a set of shapes, to be exactly equal to the input polygon. The polygon enclosing
problem as described in only requires the solution to contain the input polygon. The
packing problem, on the other hand, requires the solution to be contained in the input polygon

instead. Polygon packing is a considerably difficult problem, however, as most if not all non-trivial
varieties of it are NP-complete.

1.2 Covering
1.2.1 Introduction

In the polygon covering problem, given some simple polygon P defined by n points in the two-
dimensional plane, one is to find a smallest set of geometric objects of a given type (e.g. rectangles)
such that their union is equal to P. Polygon covering is a subclass of polygon decomposition.
Various geometric objects are often considered, such as squares, rectangles, star-shaped polygons,
convex polygons, and triangles.

Most problems within the class of polygon covering have been shown to be NP-hard. A summary
of the results can be found in [Table 1. For all of the problems listed, Steiner points are permitted
and the minimization measure is the number of components of the decomposition.

1.2.2 Minimum square cover

In the minimum square cover problem, a polygon is to be covered using as few squares as possible.

Initially, the image processing literature [86] had assumed the minimum square cover to be NP-hard
following NP-completeness results for the minimum rectangle cover problem, which is discussed
in . However, Aupperle et al. [b] managed to disprove this assumption and showed
that the minimum cover can be found quickly after all. Their approach considers the minimum

square cover problem restricted to orthogonal polygons whose vertices are all at integral coordi-
nates. Within these coordinates, a unit square is called a block. They reduce the polygon to a
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chordal graph. Using a known algorithm for finding a minimum clique cover of a chordal graph
by Gavril [34], they find a minimum square cover in O(B?:), where B is the number of blocks in
the polygon. Aupperle [4] then improved the complexity to O(B?).

Table 1: Results on the covering of (orthogonal) polygons into various types of components.

Holes Component Polygon Result Author(s)

Yes Squares Orthogonal O(B'®) Aupperle [4]

Yes Squares Orthogonal  O(n + k) Bar-Yehuda & Ben-Chanoch []
No Squares Orthogonal NP-complete Aupperle et al. [5]

No Squares Orthogonal MAXSNP-hard Berman & DasGupta [L1]

Yes Rectangles  Orthogonal NP-complete Masek [68]

Yes Rectangles”  Orthogonal O(n + k) Bar-Yehuda & Ben-Chanoch [f]
No Rectangles  Orthogonal® O(n?) Franzblau & Kleitman [31]

No Rectangles  Orthogonal NP-hard Culberson & Reckhow [22]

No Convex Polygons NP-hard Culberson & Reckhow [22]

Yes Convex Polygons NP-hard O’Rourke & Supowit [[71]

Yes Star-shaped  Polygons NP-hard O’Rourke & Supowit [[71]

Yes Spiral Polygons NP-hard O’Rourke & Supowit [[71]

* Axis-aligned rectangles of fixed aspect ratio;
T x-monotone polygons

The problem was later solved by Bar-Yehuda and Ben-Chanoch [§] for hole-free, rectilinear poly-
gons and axis-aligned squares with an amortized O(n + k) time algorithm, where k is the output
size. Their approach considers all maximal squares within the input polygon. In order for a square
to be maximal, it must be bounded on two of its opposite sides by a segment of the input polygon.
Each maximal square must be either a continuator or a separator with respect to the input poly-
gon. Continuators are maximal squares that, when intersected with the outline of the polygon,
result in a single, continuous partial outline. Separators are maximal squares that, when removed
from the input polygon, disconnect it. These topological properties allow for identifying essential
squares which must be in the minimum cover and eraseable regions which are already covered and
may therefore be disregarded. This leads to a simple local optimization approach which completes
in O(n + k) iterations, where k is the output size. Combined with a data structure for visibility
queries, the result is an O(n + k) amortized time algorithm.

Aupperle et al. [f] further showed that the minimum square cover problem is NP-hard for rectilinear
polygons that contain holes. Their proof consists of a reduction from Planar 3-SAT [5§], which
makes use of three constructs, typically referred to as ‘gadgets’, which are placed on a grid:

1. Variable Loop (see )

This construction is placed in the grid, such that even and odd grid lines represent positive
or negative boolean values respectively. The Variable Loop is placed on this grid as a loop
shaped, rectilinear polygon. It can be grown to arbitrary height to accommodate for the
required number of instances of the variable. Due to the spacing between the indents along
the side, in any minimum cover either all even or all odd connections to wires must have a
square protruding into their respective wires, analogous to a TRUE value, whereas the other
connections must all have a covering flush to the loop’s side, representing a FALSE value.
This results in what corresponds to the consistency of a variable’s value among its positive
and negative instances.
2. Wire (see [Figure 2(b))
The fundamental design of this gadget consists of a horizontal, straight and open-ended
strip of even length and width equal to two. As a result, any minimum covering of the strip
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must either be flush on both ends, or have squares protruding from both ends, allowing
for the propagation of a boolean value from its source to its destination. The fundamental
design can be augmented by allowing the wires to bend, although to maintain aforementioned
propagation property, the source and destination of the wire are to be centered on horizontal

grid lines of equal parity (both even or both odd).
3. Junction (see)

The clauses of Planar 3-SAT are modeled as Junctions. By itself, it can only test the
value of the logical AND of three input variables. The logical OR, which is required to
represent the clauses of the Planar 3-SAT, can be acquired by applying DeMorgan’s law:
Each literal in the problem instance is negated and each OR is replaced by an AND. The
Junction construction comes in two varieties, but both have their left boundary aligned on
even vertical grid lines. One for the case that all literals are either negated (aligned on odd
horizontal grid lines) or non-negated (aligned on even horizontal grid liens), and another for
clauses in which there are two negated variables and one non-negated, or vice versa. By the
commutative property of the logical OR, these two variants suffice to represent any clause of
three variables. A Juncion can be covered with 12 squares if and only if all three input wires
carry a TRUE value, otherwise 13 squares are required to do so. As for using the Junction
to emulate the logical OR, rather than finding an assignment of truth values such that all
clauses are satisfied, i.e. Junctions are covered with 12 squares each, the task is now to find
an assignment such that each clause is not satisfied, in which the corresponding Junctions
are covered with 13 squares each.

(a) Variable loop (b) Wire

(¢) Junction

Figure 2: Gadgets for Planar 3-SAT hardness reduction to minimum square cover. Gray squares
represent squares that must always exist in a minimum square cover. Even and odd grid lines are
represented as dotted and dashed lines, respectively.
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Using these gadgets, an instance of Planer 3-SAT can be transformed to an instance of covering
a rectilinear polygon with squares in polynomial time. A minimum threshold value can be com-
puted from the boolean formula and the design of the gadgets which corresponds to whether the
formula is satisfiable based on the number of squares used in the minimal cover. In this particular
construction, let C' be the number of squares in a minimum cover, and V, W, J, the variable
generators, the number of squares required to cover the wires, and the junctions of the polygon,
respectively. If C =V + W + 13J, then the formula is satisfiable. Else, if C < V + W + 13J, then
the formula is not satisfiable.

In fact, Berman and DasGupta [[11] later proceeded to show that the problem with polygons that
contain holes is MAXSNP-hard, presenting the first MAXSNP-hardness proof for a geometric
problem. Their results ruled out the possibility of a polynomial time approximation scheme.

1.2.3 Minimum rectangle cover

Covering a hole-free, orthogonal polygon using as few rectangles as possible is known as the
minimum rectangle cover. Masek [68] showed that covering a rectilinear polygon, which may
contain holes, with rectangles is NP-complete.

For polygons that may contain holes, Bar-Yehuda and Ben-Chanoch [] extend their results on the
minimum square cover to covering with axis-aligned rectangles of a given aspect ratio, by scaling
the input set in one coordinate axis by the specified aspect ratio. Doing so results in an problem
instance that can be solved using the algorithm for the minimum square cover, which therefore
runs in O(n + k) time as well.

Franzblau and Kleitman [B1] provided an algorithm for covering an orthogonal polygon R of n
vertices without holes minimally using rectangles, on the condition that the polygon is z-monotone.
That is, if the polygon is intersected with any vertical line, the result is either empty or a single,
continuous line segment. Their solution is based on a reduction to an equivalent, 1-dimensional
problem. First, the polygon is divided up in horizontal slices, a connected set of squares in the
same row of R, with both ends on the boundary, i.e. it is horizontally maximal. Observe that a
horizontal slice uniquely identifies a maximal rectangle in R. However, two horizontal slices that
determine the same maximal rectangle are called equivalent. A top to bottom sweepline algorithm
can obtain the set of inequivalent horizontal slices. These sets are then projected onto the z-axis,
resulting in a set S of intervals. A set G generates S if it consists of the elementary intervals of .S,
i.e. every interval in S is equal to the union of one or more intervals in G. A generating set G for
S can be constructed into a set of vertically maximal rectangles in R which cover R. Moreover,
the authors prove that a minimum generating set M GS of S can be used to construct a covering
that uses the least number of rectangles. In order to compute MGS, generating set G is reduced
iteratively until each interval has at least one subinterval that is not covered by other intervals in
G. The entire procedure can be completed in O(n?) time.

Culberson and Reckhow [22] proved the NP-hardness of the following covering problems, even for
polygons without holes:

. Covering an arbitrary polygon with the least number of convex polygons

. Covering the boundary of an arbitrary polygon with the least number of convex polygons
. Covering an orthogonal polygon with the least number of rectangles

. Covering the boundary of an orthogonal polygon with the least number of rectangles

=W N =
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The NP-hardness proofs rely on reduction from SATISFIABILITY using three gadgets:

1. The Beam machine structure forces one of two slim convex polygons to be present in a

minimum covering, corresponding to the assignment of its matching variable.

Variable generators ensure a consistent assignment for each variable.

3. Clause checkers model the clauses of boolean formulas and can only be covered minimally if
their corresponding clause can be satisfied.

o

1.2.4 Other minimum covers

The problems of covering with a minimum number of convex polygons, star-shaped polygons, or
spiral polygons was later shown to be NP-hard by O’Rourke and Supowit [[71].

Batchelor [[7] investigates a procedural approach using convex sum/difference decompositions.
Their decomposition consists of a tree structure, the concavity tree. The root consists of the
convex hull of the polygon, representing a sum operation. Its children consist of the convex
hulls of concavities in the polygon, representing a difference operation. The algorithm proceeds
in alternating fashion, each level representing either a sum or a difference operation, until there
are no more concavities. While introducing the concept of removing polygonal areas makes the
algorithm more powerful, the presented algorithm also exhibits instability. That is, a small change
in the input shape results in a major change of the resulting concavity tree.

1.2.5 Approximation algorithms

A large portion of the covering problems, while provably intractable, still have plenty of practical
applications and thus call for efficient solutions that find approximations of their respective optimal
solutions. An overview of approximation algorithms for the polygon covering problem can be found
below.

It is trivial to observe that simple polygons with acute angles cannot be covered by squares. For
general polygons without acute angles, it was unclear whether the problem could be solved, even
in exponential time, until Levcopoulos and Gudmundsson [56] gave an O(n) time approximation
algorithm with an approximation factor of O(«a(n)), where « represents the inverse Ackermann
function.

Hertel and Mehlhorn [36] describe a simple and fast algorithm to find a 4-approximation for
a minimum cover using convex subpolygons, given a triangulation for the polygon. For each
reflex vertex, add at most two edges such that the subangles are all convex. What remains is a
partitioning with at most 4 times the minimum number of convex subpolygons.

Eidenbenz and Widmayer [28] propose a polynomial-time approximation algorithm for finding
the minimum convex covering for polygons with or without holes. The authors first consider an
optimal solution to a discretized version of the problem where vertices may only lie on a quasi-
grid. After showing that the optimum solution to the restricted variant of the problem contains at
most three times as many convex polygons as the unrestricted variant, a dynamic programming
approach is applied iteratively to obtain a solution for the unrestricted problem that has an
O(logn) approximation factor. Moreover, the problem is shown to be APX-hard.

The problem of covering an orthogonal polygon that contains holes with rectangles was shown to
be NP-complete by Masek [68]. Since it is a special case of the general set covering problem, it
admits a polynomial time approximation algorithm with approximation factor O(logn) using a
greedy scheme by Johnson [41]. However, Kumar and Ramesh [p4] improved on this bound and
presented an O(y/logn) factor approximation algorithm for the problem.
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1.2.6 Rectilinear p-center problems

Rectilinear 1-center problem Given a convex polygon P of n vertices, Bereg et al. [9] consider
the rotation of its enclosing square and identify a linear number of key events that may result
in a minimum size of the enclosing square. Each event can be processed in constant time, which
would yield an O(n) time algorithm. Non-convex polygons can also be covered in O(n) time by
transforming the non-convex polygon into a convex hull using Melkman’s linear time convex hull
algorithm for simple polygons [69]. The approach can also be applied to point sets by computing
their convex hull in O(nlogn).

Rectilinear p-center problems For the case where it does not matter whether the resulting
shapes overlap, Drezner [27] established an optimal solution for the rectilinear 2-center problem
with an O(n) time algorithm, whereas Hoffmann [37] presented an O(n) time algorithm for the
rectilinear 3-center problem. Using the notion of p-piercing, Sharir and Welzl [80] show that the
rectilinear 4-center can be solved in worst-case optimal O(nlogn) and the rectilinear 5-center
problem can be solved in O(n log® n) time. The latter gives rise to an algorithm that solves the
rectilinear p-center problem for p > 5 in O(nP~* log® n) time. For large values of p [37)], the best
known asymptotic running time for solving the rectilinear p-center problem is O(n®v?T10logn)
by Agarwal and Procopiuc [If].

Discrete rectilinear 2-center problem Katz et al. [44] consider the problem of covering
the points in set S by two “constrained” axis-parallel squares whose center must coincide with
points from S, while minimizing the area of the largest square. This problem is known as the
discrete rectilinear 2-center problem. In fact, the authors generalize the problem by introducing
point set C, which consists of m points. In the generalized problem statement, the centers of
the axis-parallel squares must coincide with points from C, rather than with points from S. In
their approach, the decision variant of this generalized problem is first solved: Given a set S of
n input points and area A, find two discrete axis-parallel squares of area A each that cover S.
In order to solve the decision problem, they introduce the notion of (p,C)-coverable, which holds
if S is contained in the union of p rectangles of area A, each constrained to a points in C. The
original decision problem could then be rephrased as to determining whether S is (2, §)-coverable.
In order to determine whether S is (2,C)-coverable, S is partitioned into four quadrants by two
orthogonal lines. Without loss of generality, let So be the subset of points of S which reside in
the top-right quadrant, and let S = S\ So. Note that there are n? distinct configurations for
the two orthogonal lines. An n X n X 2 matrix is computed such that each entry represents, for
a particular configuration of lines, whether either S; or Sy is (1,C)-coverable. The coverability
can be computed efficiently by dynamically maintaining an orthogonal range tree. Employing
an approach similar to searching in monotone matrices by Sharir [79], finding an entry for which
both sets are (1,C)-coverable results in an O(nlogn) time algorithm. The solutions to the decision
problem can be transformed to a solution to the optimization problem by applying a sorted matrix
technique by Frederickson and Johnson [32].

Discrete rectilinear 2-center problem with constraining set In previous research, Be-
spamyatnikh and Segal [[12] considered covering S by two axis-parallel boxes that are not con-
strained, i.e. their centers need not coincide with any point from an additional point set C. More-
over, rather than using the area of the boxes directly, the algorithm optimizes monotone measures
of the rectangles that can be evaluated in constant time, such as the perimeter of the box, the
diagonal of the box, or the area of the box. First the notion of determinators is introduced, which
are the extreme points of each of the d axes resulting in 2d determinators. For the two-dimensional
case, they show that it suffices to traverse the points in sorted z-order, using two pointers as a

11



Master Thesis Utrecht University

sliding window for configurations that yield valid values of the monotone measures. Therefore, for
a presorted list of points, the algorithm can solve the problem in linear time.

For higher dimensions, the authors consider all (de) configurations where for each axis, one deter-
minator is fixed. Without loss of generality, starting from an initial solution of two dimensions, the
authors consider all tuples of d — 2 points in S, resulting in n~2 tuples. A linear time procedure
is discussed that solves the problem with one specific tuple, resulting in a total running time of
O(nlogn +nd=1).

1.2.7 Enclosing problems

Bereg et al. [9] solve the enclosing problem for up to four unconstrained squares in a wide variety of
settings for point sets of n points. These problems are similar to the rectilinear p-center problems,
in that a set of points is to be covered using squares of minimum size. However, in addition to
axis-aligned squares, some of these enclosing problems may allow for arbitrary rotation of the
squares.

In addition to specifying the number of squares and their orientation, the parameters to the
enclosing problems include whether the squares may overlap. Either they may, or they may not in
which case they must be disjoint. Additionally, they present algorithms which are not constrained
as such. The results are summarized in .

Table 2: Minimizing the size of the largest square. AP = “axis-parallel”, AO = “arbitrary orien-
tation”, D = “disjoint”, D = “non-disjoint” (overlapping), and DC = “don’t care” (the squares
involved are not constrained to be D or ND).

Number of squares D/ND/DC AP/AO Previous result Bereg et al. [] result

1 - AO O(n?logn) 23] O(nlogn)

1 - AO - O(nlogn)

2 D AP O(nlogn) [40]  O(n)

2 ND AP - O(n)

2 DC AP O(n) [BQ] O(n)

2 D AP-AO  O(n?logn) [50] -

2 DC AP-AO - O(n®logn)
2 DC AO - O(n*logn)
3 D AP - O(nlogn)

4 D AP - O(n?log® n)

For 2 disjoint axis-parallel squares, Bereg et al. partition the set of points in two almost equally
sized subsets using a vertical line. That is, the size of the sets may differ by at most one. For both
subsets, determine the smallest enclosing square and consider the smallest of the two. Observe
that it is defined by its extreme points and that if those are covered by one square, all other
points in this subset are covered too. Those non-extreme points can therefore be removed from
consideration. This process is repeated with the remaining points until the smallest enclosing
squares are of equal size, in which case the algorithm is finished, or when the total size of the set
of points falls below a preselected constant, in which case the remainder is solved by brute force.
This results in an O(n) time algorithm. Note that, unless the constant is chosen to be too small,
the vertical line will not separate points that were jointly considered as extremes before.

For 2 overlapping axis-parallel squares, Bereg et al. initially consider two rectangles, each covering
two adjacent extremes of the points. Without loss of generality, the first rectangle has sides on
the leftmost and topmost points, while the other rectangle has sides on the rightmost and bottom-
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most points. The rectangles are then expanded towards the center, while maintaining equal size,
until they touch each other. If all points are covered, the rectangles are shrunk to minimal size.
Otherwise, determining how far both squares are to expand requires a constant time computation
for each of the remaining points. It should be noted that from one point it may suffice to only
grow one of the squares. This results in an O(n) time algorithm.

For the problem of covering two squares of which one is axis-parallel and the other is arbitrarily
oriented, where overlapping or disjointness is irrelevant, Bereg et al. provide an O(n®logn) time
algorithm. The algorithm considers all O(n?) pairs of 2 coordinates and y coordinates as bottom-
left of the axis-parallel square. For each pair, the corresponding square S is expanded, encountering
O(n) events where a new point touches the boundary of the square, defining a new axis-parallel
square S. The minimum (arbitrarily oriented) enclosing square S’ of the points that are not
contained in S can be computed and maintained using a modified Graham scan in O(n) time.
Clearly, as the size of S increases, the size of S’ is monotonically non-increasing. Therefore, a
binary search on the size of S can be used to minimize the maximum of the sizes of S and S’.

This solution can be extended for the case of two squares which are both independently arbitrarily
oriented, where overlapping or disjointness is irrelevant. Observe that for a pair of points, their
projection on the z-axis may reverse by rotating the z-axis. Accordingly, a single point has
n — 1 critical angles, while for all points collectively, there are O(n?) critical angles.

Consider the bottom left point of S, which consists of the z and y coordinate of two points in S
(which may be the same point), respectively. Rotating the x-axis yields O(n) critical angles, as
described before. The previous algorithm can then be applied on the rotated set of points, such
that what is now axis-parallel square .S originally corresponds to a square which is rotated by the
critical angle. This imposes an additional linear factor on the original algorithm, resulting in a
O(n*logn) running time.

Note that between two subsequent critical angles, it may occur that the width of the minimum
enclosing rectangle becomes larger than its height or vice versa, which constitutes another critical
angle. Overall there will however still be O(n?) critical angles.

A minimal covering with three axis-parallel, disjoint squares may take on exactly one of six different
patterns. Either the three squares are aligned in a line, horizontally or vertically, or there is a
line that can separate one square from the other two from the left, right, top or bottom. In order
to find a minimal covering for a given point set, for each pattern the points are partitioned into
two subsets using the corresponding dividing line and solve the problem optimally for one square
and two squares, respectively. The optimal placement for each line can be determined by a binary
search, incurring an additional O(logn) factor, which leads to an O(nlogn) algorithm.

In order to proceed to four disjoint axis-parallel squares, the notion of guillotine k-partition is
introduced. A k-partition of a rectangle R is a partitioning of R into k subrectangles. A guillotine
cut is a cut from top to bottom or from left to right. The authors describe classify 6 distinct
4-partitionings, as illustrated in [Figure 3. Using one guillotine cut, each can be decomposed into
two subproblems of at most three rectangles. The underlying point set in each subproblem can
then be covered using one of the previous algorithms. There are O(logn) choices for the guillotine
cut, and each subproblem can be solved in O(nlogn) time, resulting in an O(nlog®n) algorithm.

However, there remains one configuration of point sets that must be taken into account. Four
rectangles may permit a hole, as shown in Fiéure %, setting it apart from the 4-partitions, topolog-
ically speaking. In order to solve this case, let R be the axis-aligned bounding box of the point set.
For each pair of points, the vertical positions of H,, and H; are fixed on their vertical coordinates,
respectively. A nested binary search can then be used to determine the horizontal positions of V.
and V; such that the area of the largest subrectangle is minimized. The mirror image of this case
is solved analogously. This procedure results in an O(n?log® n) time algorithm.
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(a) (b) (c) (d) (e) (f)

Figure 3: Distinct 4-partitions. The blue line denotes the first guillotine cut.

vy

Vi

Figure 4: Non-guillotine 5-partition of rectangle R. The gray subrectangle may not contain any
points.

Enclosing polygons In polygon covering, given a polygon P (or alternatively, a set of polygons)
and a number p € N, a set of p geometric objects of a given type and minimal size is to be
found such_that any point in (any polygon in) P is contained in at least one of the p shapes.
Hoffmann [37] considers polygon covering of a set of non-intersecting polygonal regions with axis-
parallel congruent squares. For p = 2, he first generalizes the problem to line segment covering
and subsequently reduces it to point set covering, which was shown to be solvable in O(n) time.
For p < 3, Hoffmann reduces the problem to covering the boundary edges of the polygon, which
can similarly be solved in O(n) time.

1.3 Partitioning
1.3.1 Introduction

Given a simple polygon P defined by n points in the two-dimensional plane, the polygon parti-
tioning problem is to find a smallest set of disjoint simpler subpolygons, such that their union
is equal to P. The problem is very similar to the polygon covering problem, except in that the
partitioning problem requires the decomposition to have no overlap at all. These two problems
jointly make up the class of polygon decomposition problems.

Examples of the applications of polygon partitioning are pattern recognition, (robot) motion
planning [65], and more advanced computational geometry problems. Partitioning may result
in a compact description of the original figure [B1], and may allow for the use of more efficient
algorithms that only apply to simpler figures [60].

Polygon partitioning problems may allow for the use of Steiner points. These are additional
vertices introduced to facilitate the partitioning [IL0]. If not allowed, a partitioning may only use
the vertices of the input polygon.
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1.3.2 Convex partitioning with holes

For polygons with (degenerate) holes, Pagli et al. [66] show that the problem of partitioning the
polygon into a minimum number of convex components is NP-hard, if Steiner points are not
allowed. Lingas [59] followed up and proved that even when allowing Steiner points, the problem
remains NP-hard. Their proof is similar to the hardness proofs for covering, but reduces from
a modified planar satisfiability problem (MPLSAT), where each clause with three literals must
contain at least one positive and one negative clause. The proof makes use of wire loops which
can only be partitioned in exactly two manners, corresponding to the boolean assignment of a
variable. Junctions are designed such that it can only be partitioned minimally if each of the
connected wire loops is partitioned as specified by the one-to-one correspondence with its clause.

1.3.3 Convex partitioning without holes

For polygons without holes, Keil [46] developed an O(N?nlogn) time algorithm that disallows the
use of Steiner points. Here, n represents the number of vertices of the polygon and N represents the
number of reflex vertices of the polygon. Keil and Snoeyink [49] later improved the approach and
achieved an O(n + N?min{N?,n}) time algorithm. The improvements include the use of stacks
in place of a search structure, and simplification of the input which retains the same minimum
partitioning but has a bound of O(min(N?2,n)) sides.

For the case that allows for Steiner points, Chazelle and Dobkin [17] present a polynomial time
algorithm for partitioning a polygon into a minimum number of convex components. Their ap-
proach makes use of dynamic programming to identify X patterns in the polygon, which represent
an interconnection between reflex vertices which, when used as decomposition, remove those reflex
angles and introduce no new ones. An Xj pattern is an X pattern that connects k reflex ver-
tices. It follows that decomposition using the most X patterns is minimal. However, determining
whether a set of reflex vertices can be interconnected via an X pattern appeared too involved of a
process. The introduction of Y patterns resolves this problem. Y patterns can be regarded as X
patterns with an additional structural property. Aside from X, patterns, any X pattern can be
advantageously replaced by a Y pattern. Moreover, Y patterns can be constructed in polynomial
time using dynamic programming. This approach leads to an O(n + N3) time algorithm.

1.3.4 Minimizing ink

Another optimization criterium is the minimization of the total edge length, or ‘ink’. Partitioning
a polygon into convex subpolygons such that their total edge length is minimized if Steiner points
are allowed was shown to be NP-complete by Lingas et al. [61], regardless of whether or not the
polygon may contain holes. Their approach is very much alike the typical approach with gadgets
for rectilinear partitionings of rectilinear polygons. The one exception is that the phase shifter, a
gadget used to line up other gadgets, now needs to incorporate non-rectilinear lines. Greene [35]
presents a minimum ink algorithm for partitioning into convex subpolygons based on Keil [46], in
O(n?N?) time.

The results are summarized in [Table 3.
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Table 3: Results on the partitioning of polygons into convex subpolygons. The results either
minimize for number of components (C) or edge length (E).

Holes Steiner points Optimizing Result Author(s)

Yes Yes C NP-hard Lingas_[pY]

Yes No C NP-hard Pagli [66]

No No C O(N?nlogn) Keil [46]

No No C O(n+ N?min{N? n}) Keil & Snoeyink [149]
No Yes C O(n+ N?3) Chazelle & Dobkin [{L6]
Yes Yes E NP-complete Lingas et al. [61]

Yes No E NP-hard Keil [45]

No Yes E NP-complete Lingas et al. [61]

No No E O(N?n?) Greene [35]

1.3.5 Polygon triangulation

Partitioning a polygon into triangles, widely known as triangulation, plays an important role
in computational geometry. Many algorithms for polygons begin by triangulating the polygon.
Triangulation can be used to create mesh networks and are often used in representing terrains.

Garey et al. [B3] proved an O(nlogn) time algorithm as early as 1978. Ten years later, Tar-
jan and Van Wyk [82] discovered an O(nloglogn), which was later simplified by Kirkpatrick et al.
Chazelle [[15] followed up with an asymptotically optimal running time, showing that any simple
polygon can be triangulated in O(n) time.

1.3.6 Rectangular partitioning

When partitioning orthogonal polygons, rectangles become an important component to consider.
Partitioning orthogonal polygons into axis aligned rectangles has various applications in image
processing and VLSI design. Steiner points in this setting are typically assumed to be allowed.
Lipski et al. [66] used a maximum bipartite matching approach on the vertical and horizontal
chords to develop an O(n°/2) time algorithm for partitioning orthogonal polygons with holes into
a minimum number of rectangles. Due to the discovery of a special structure of the bipartite
graph, the running time was improved to O(n?/? logn) by Lipski [64, 65] and Imai and Asano [39].
Later Soltan and Gorpinevich [81]] extended the algorithms to achieve the same running time while
allowing for holes that degenerate into points. Liou et al. [62] show an Q(nlogn) time lower bound
for the problem with holes using a reduction from the sorting problem.

As for orthogonal polygons that do not contain holes, Liou et al. [63] developed an algorithm that
originally solved the rectangular partitioning problem in O(nloglogn), based on the algorithm
Tarjan and Van Wyk [82] that triangulates simple polygons in O(nloglogn) time. However,
Chazelle [15] published an algorithm that achieves linear time triangulation of simple polygons,
which in turn allows for the algorithm of Liou et al. to run in O(n) time. The three dimensional
version of the problem is shown to be NP-complete by Dielissen and Kaldewaij [24].

When optimizing for minimum edge length rather than minimum number of rectangles, Lin-
gas et al. [61] present an O(n*) time algorithm for orthogonal polygons without holes. Addi-
tionally, they show that if a polygon were to contain holes, the problem becomes NP-complete
following the same proof of partitioning general polygons into convex polygons.
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Table 4: Results on the partitioning of orthogonal polygons into rectangles. The results either
minimize for number of components (C) or edge length (E).

Holes Optimizing Result Author(s)

Yes C O(n?/?) Lipski et al. [64, 65, 66]
No C O(nloglogn) Liou et al. [63]

No C O(n)" Liou et al. [63]

Yes E NP-complete Lingas et al. [61]

No E O(n%) Lingas et al. [61]

* Using the linear time polygon triangulation by Chazelle [15].

1.3.7 Partitioning into squares

Supposedly, StackOverflow user ‘Realz Slaw’ shows that partitioning an orthogonal polygon into
squares is NP-hard by reduction from PLANAR-3-SAT B . Remarkably, this result is an interesting
juxtaposition with the covering problem, where covering with rectangles is NP-hard but covering
with squares is possible in polynomial time.

1.3.8 Quadrilateralization

If Steiner points are disallowed, quadrilaterals are used instead, as a generalization of rectan-
gles. Partitioning a polygon into a convex quadrilaterals is referred to as quadrilateralization.
Kahn et al. [43] show that it is always possible to find a quadrilateralization for orthogonal poly-
gons, whereas it is not always possible for arbitrary polygons. Based on their proof, Sack [[77]
developed an O(nlogn) time algorithm to find a partitioning into a minimum number of quadri-
laterals. Moreover, they show that quadrilateralization of arbitrary monotone and star-shaped
orthogonal polygons can be quadrilateralized in O(n) time. Lubiw [67] takes a new approach to
the results of Kahn et al. [43] by showing that rectilinear polygons without holes and rectilinear
with holes are CQ hereditary and provides an O(nlogn) time algorithm. A class P of polygonal
regions is CQ hereditary if every polygonal region in P which is not itself a convex quadrilat-
eral has a removable quadrilateral which leaves polygonal regions. As for minimum edge length
quadrilateralization, Conn and O’Rourke [20] presented an O(n?logn) time algorithm, which was
an improvement on the algorithm by Keil and Sack [47] which runs in O(n?) time.

1.3.9 Approximation

For polygons without holes, disallowing Steiner points, Greene, and Hertel and Mehlhorn [35, B6]
provide O(nlogn) time algorithms that find a convex partitioning that contains at most four times
the optimal number of components. Allowing Steiner points, Levcopoulos and Lingas [p7] present
an O(nlogn) time algorithm that results in a solution of size O(plog N), where p is the length
of the perimeter of the polygon. For polygons with holes, they provide another O(nlogn) time
algorithm that results in a solution of size O((b+m)log N), where b is the combined length of the
perimeter of the polygon and its holes, and p is the minimum length of its convex partition.

As for minimizing total edge length, Plaisted and Hong [4] give a polynomial time algorithm
for the partitioning of a polygon into convex parts, guaranteeing a total edge length of at most

Thttps://cs.stackexchange.com/questions/16661/tiling-an-orthogonal-polygon-with-squares/16801#1
6801
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12 times that of the minimum total edge length, leading to an approximation algorithm for the
minimum cost triangulation of polygons of an approximation ratio of O(logn).

1.4 Packing

1.4.1 Packing with squares

Fowler et al. [30] first give an outline for showing the NP-completeness of packing a two-dimensional
polygon with squares of fixed size, where all coordinates are integers, by a reduction from maximum
independent set problem. They go on to show the NP-completeness of packing squares into a two-
dimensional polygon in the general case, denoted as the BOX-PACK problem, by a reduction from
3SAT. Let M, N denote the number of variables and clauses of the 3SAT instance, respectively.
Furthermore, the size of the squares that are to be packed is 2 x 2. The reduction is based on a
wire gadget which consists of a chain of connected “slots” for squares to be packed into, as shown
in . That is, for now each slot overlaps exactly two other slots, namely its neighbors.
Due to this overlap, there are exactly two maximum packings for such a construction, where either
squares are packed in all odd slots or in all even slots. Now let each variable v; be represented by a
closed wire which consists of 2 % K; slots, then a maximum packing must contain K; squares. The
two different maximum packings correspond directly to the value assignment of the corresponding
variable. Loops of different variables may cross using a crossover region as shown in Eiéure 5(b r
It is a 3 x 3 square which is not taken into account when considering the length of each wire. In
a maximum packing, each of the IV, crossover regions is always packed with exactly one square.
Finally, the clauses of the 3SAT are modeled by bringing the variable loops of each of the involved
variables into close proximity in a clause region. The clause region has the property that if at
least one of the variables loops is in the a proper state, i.e. the value assignment of the variables
satisfies the clause corresponding to the clause region, an extra square can be placed within it.
This concludes the construction of a BOX-PACK instance from an 3SAT instance. A conjunctive
normal form formula is satisfiable if and only if the corresponding constructed polygon can be
packed with sz\i1 (K;)+N¢+N squares. Since BOX-PACK is clearly in NP, and the aforementioned
construction can be built in polynomial time, BoX-PAcK is NP-complete.

r

(a) Wire gadget. In a maximum packing, (b) Crossover region. In a maximum packing,
either each yellow area (dashed) is packed, or exactly one yellow (dashed) and one blue
each blue area (dotted) is packed. region (dotted) must be packed with squares

1.4.2 Rectangle packing

In the rectangle packing problem, a rectangular container is to be packed with rectangles from
a given set. Korf et al. [38, b2, p3] show that the rectangle packing problem is NP-complete by
a reduction to the bin-packing problem. In the rectangle packing problem, given a rectangular
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container and a set of rectangles, one is to find a placement of the rectangles inside the container,
such that they do not overlap and are contained within the container entirely. It finds applications
in the warehouse industry, where real life packing is applied. Other applications are the wood and
glass industries, where rectangular components are to be cut from rectangular sheets, and can be
applied to decrease wastage in the clothing industry [42]. Bennell and Oliveira [§] explore different
heuristic solutions that apply to practical situations. More recently, Junior et al. [42] propose a
heuristic for the packing of nonregular shapes into a rectangular strip of constant width, with the
goal of minimizing the required length of the strip. Their solution is a hybrid of previous results
that makes use of previous results. It combines genetic algorithms, a greedy bottom-left heuristic
and the no-fit polygon data structure.

2 Research Questions and Methodology

2.1 Introduction

Schematic Maps Maps are a widely used visual medium for conveying information and placing
it within geographic context. Often, exact geographic details are not required to convey the
primary information of a map. Thematic maps provide a thematic overlay that is specifically
designed to convey information on a particular theme related to a specific geographic area. An
abundance of superfluous details may however distract or even obscure from the main purpose of
a map [25, [70].

A schematic map often depicts the elements in an abstract and stylized form. The concept of
simplification refers to reducing the level of detail of a map in order to support and reinforce the
main message of the map and is an essential part of schematization. Schematization can be used
to structure and simplify the information in order to lead to a better understanding and a reduced
cognitive load for the user. Manual construction of schematic maps is a time-consuming process
and along with the need for digital, up-to-date maps, has given rise to an interest in automated
schematization.

Design Rules Part of the research in automated schematization focuses on identifying de-
sign rules and attempting to formalize them in terms of generalization operators and heuristics.
Buchin et al. [13] introduce the notion of an edge-move a local operation for polygonal features
which is suitable for iterative simplification. Reimer and Meulemans [6] conjecture that an par-
allelity is an important design rule for the construction of chorematic diagrams. Continuation of
line features can be considered as another desirable design rule [19, p1].

2.2 Paper outline

In this paper, two approaches for the schematization of territorial outlines will be investigated. The
territorial outlines are assumed to be simple orthogonal polygons. The results of the experiment
on the approaches are eventually compared with respect to a quality measure of the complexity
and continuity of linear features. The intent of this paper is to determine whether the suggested
approaches are suitable and desirable for the automated schematization of maps.

The quality measure incorporates the notion of complexity and colinearity. Let P be a simple
orthogonal polygon of n vertices. Its complexity is measured as the number of edges in the solution,
denoted E. The colinearity of P is measured as the number of lines that the edges coincide with,
denoted L. Note that L is equal to the sum of number of distinct x and y-coordinates of the
vertices of P. Parameter w € [0,1] denotes the relative importance of colinearity with respect to
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complexity. Quality measure @ is defined as follows:
QP)=w-L+(1-—w)-FE

In addition to the quality measure, a (dis)similarity measure (e.g. symmetric difference, Fréchet
distance) and a corresponding threshold are introduced that represent the degree of schematization
of the solutions. A higher degree of schematization may allow for better solutions with respect to
the quality measure, but may diminish resemblance to the original polygon. The (dis)similarity
measure, its threshold and w constitute the parameters to each approach.

The first method approximates a polygon with the union of a set of orthogonal rectangles. Intu-
itively, this approach promotes continuity of line features in that the set difference of any output
rectangle and the other output rectangles is expected to contain colinear lines. The (dis)similarity
measure and its threshold represent the permitted degree of schematization, or in other words the
permitted error with respect to the input polygon.

The second method is based on the notion of an alignment operator, which takes two parallel
edges and shifts them along their perpendicular axis until the edges are colinear. This approach
is expected to directly improve continuity by making edges colinear.

2.3 Research Questions

1. For each approach, how do variations in the (dis)similarity threshold and w influence the
performance of the approach on orthogonal territorial outlines with respect to the quality
measure?

2. Which approach yields better results on orthogonal territorial outlines with respect to quality
measure?

If time permits, an optional hypothesis may be considered:

A. The proposed colinearity-based approaches result in schematizations that humans consider
to have improved visual complexity.

2.4 Research Methodology

At first, the visualization and quality measure are implemented to provide a structure for testing.
Then the approaches are to be fully designed and implemented, along with a visual interface for
the experiments.

The implementations will be tested against a test suite consisting of a set of territorial outlines.
One such test suite was made available, courtesy of the Applied Geometric Algorithms group of
Eindhoven University of Technology. The territorial outlines in the test suite must be preprocessed
into orthogonal polygons.

Different configurations for the parameters will be considered and tested on both approaches. In
the case of non-determinism, each configuration is to be tested multiple times. The mean value
and standard deviation will be computed, along with visualizations of the experiments.

In case extra time remains, Hypothesis @ may be tested by conducting a user study amongst
cartography experts.

Future works may consider polygons that are not orthogonal and independently oriented rectangles
and lines, which may include parallelity in the quality measure.
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3 Planning

WEEKS: 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Quality Measure -
Prepare data set -
Implement visual interface - .
Approach 1 _

Formulate
Implement
Appronct 2 —
Formulate

Implement

Experiments -
Finalize draft -

Finalize thesis .

Defense .
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